REACTION OF TROPONE WITH QUADRICYCLENE. AN EXAMPLE OF [$_{\pi}6 + _{\sigma}2 + _{\sigma}2$] CYCLOADDITION

Hiroshi Tanida and Tadahiko Tsushima

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan

(Received in Japan 21 December 1971; received in UK for publication 31 December 1971)

Cycloaddition between $\delta \pi$ and 4π addends ([$_{\pi}6 + _{\pi}4$] cycloaddition) was theoretically predicted¹ and was shortly after demonstrated by the reaction of tropone with cyclopentadiene.² We have investigated a reaction between tropone (1) and quadricyclene (2) and thereby found the first example of cycloaddition between a $\delta \pi$ system and a pair of strained σ bonds ([$_{\pi}6 + _{\sigma}2 + _{\sigma}2$] by the terminology of Woodward and Hoffmann¹).

Equivalent amounts of 1 and 2 were heated together in the dark at 70° for 5 days to yield a complex mixture consisting mainly of polymeric substances. Chromatography of this mixture on silica gel followed by thin layer chromatography on KGF₂₅₄ (Merck) separated a 1 : 1 adduct (3), mp 82.5-84°, in 9% yield; and a mixture of crystals of another 1 : 1 adduct (4), mp 52°, and a compound of unknown structure in 6% yield. When the reaction was traced by vpc, the formation of 3 was shown to be initially predominant over the other two products. The elementary analysis and mass spectrum (70 eV m/e 198 (M⁺)) of 3 were in agreement with the formula C₁₄H₁₄O. An ir carbonyl absorption at 1740 cm⁻¹ in CCl₄ and uv absorption maxima in cyclohexane at 221 mµ (ϵ 12900), 268 (4820), and 279 (4800) are compatible with the presence of a cyclohepta-3,5-dienone moiety² but not a CH=CH·C=O chromophore.³ The nmr spectrum of 3 in CDCl₃

when 0.5 equivalent amounts of Eu(DPM)₃ were added as a shift reagent revealed signals at $\delta 2.10$ (d-qui, ⁴ 1, J_{13a,13s} = 10 Hz, J_{13a,2} = 1.7, anti-H₁₃), 4.26 (m, 2, H₁ and H₁₀), 4.63 (d, 2, J_{2,13a}=1.7, H₂ and H₉), 5.92 (d-m, 1, H_{13s}), 6.86 (t, 2, olefinic H₁₁ and H₁₂), 7.31 (six, 2, olefinic H₅ and H₆), 8.10 (t-d, 2, H₄ and H₇), and 9.09 (broad d, 2, J_{3,4} = 9, H₃ and H₈). That \mathfrak{Z} is a norbornene derivative is immediately suggested by comparing these nmr data with the many available data and references obtained from norbornene derivatives.⁵ The appearance of the six olefinic protons as three pairs and the six protons (H₁, H₁₀, H₂, H₉, H₃, and H₆) as three pairs is indicative of the presence of a plane of symmetry in the molecule. The absence of coupling between H₁ and H₂ (or H₁₀ and H₉) and the presence of long range coupling between H_{13a} and H₂ (or H₉) indicate the endo orientations of H₂ and H₉ hydrogens to the norbornene ring. Orientation of the carbonyl group — whether the structure is \mathfrak{Z} or \mathfrak{Z} — was determined by the difference between the pseudo contact shifts of H_{13a} and H_{13s} with varying amounts of Eu(DPM)₃. It was found that the shift of H_{13s} was significantly larger than that of H_{13a} (Figure 1). The molecular model of \mathfrak{Z} can rationalize this difference, but that of \mathfrak{L} can not.

It was found that a compound identical with the second adduct 4 is produced in 70% yield by reaction of 1 with a large excess of norbornadiene $^{6_{17}}$ under the above conditions as used for the reaction of 1 with 2. For 4, uv max (cyclohexane) 245 mμ (sh, ε 2150), 360 (92); ir (CCl4) 1663 cm⁻¹; nmr (CCl4) δ 1.15 (d-m, 1, J_{12a} , $I_{2s} = 10$ Hz, $anti-H_{12}$), 1.92–2.43 (AB q, 2, $J_{2,8} = 9$ Hz, H_2 and H_8), 2.43–3.42 (m, 5, H_1 , H_3 , H_7 , H_{g} , and syn- H_{12}), 5.46 (d-splitting d, 1, H_{5}), 5.46-6.60 (m, 4, H_{10} , H_{11} , H_{13} , and H_{14}), 7.01 (q, 1, $J_{4,5} = 11$ Hz, $J_{3,4} = 8$ Hz, H_4). In general, cycloaddition of $\frac{1}{2}$ with a 2π olefinic compound proceeds with the formation of a bicyclo[3.2.2] nona-2,6-dien-4-one derivative. The ir carbonyl absorption and the uv max in 4 are consistent with this [3.2.2] structure, but not with the structure of a bicyclo[4.2.1] hepta-2,4-dien-9-one. The presence of the norbornene moiety in <u>4</u> is suggested by the nmr data. On the basis of these data , structures \pounds, ξ, χ and \pounds are possible . The H2 and H8 bridgehead protons (the C5 and C6 protons in norbornene) appear as a clean AB quartet, with no vicinal coupling with either the norbornene bridgehead protons (H_1 and H_9) or with the [3.2.2] bridgehead protons (H_3 and H_7). Therefore, H_2 and H_8 must be endo to the norbornene ring, and structures $\frac{7}{2}$ and $\frac{8}{2}$ are ruled out. The endo, endo-6,7 and exo, exo-6,7 derivatives of bicyclo[3.2.2] nona-2,6-diene-4-one (9) (substituents on the carbonyl side are defined as exo) are distinguishable by the coupling constants between H_1 and H_7 (or H_5 and H_4) and the presence or absence of long-range coupling between H₆ and H₈ (or H₇ and H₉),⁸ and it has been reported that, relative to the endo H₆ and H₇, the exo H₆ and H₇ have much smaller couplings with H₅ and H₁, respectively. Therefore, the clean AB quartet is not consistent with structure 6.

However, it was observed that 2 gradually transformed into norbornadiene under the reaction conditions, that the yield of 4 was very minor at an initial stage of reaction and increased with the reaction period, and also, that 3 did not convert into 4 under the reaction conditions. Consequently, it was concluded that 4 was not a direct product from the reaction of 1 and 2, but was formed after conversion of 2into norbornadiene.

Addition of hydroquinone as a radical scavenger has no significant effect on the formation of 3. The reaction appears to be stereoselective, since the isomer 5 was not found in the reaction mixture. On the basis of these findings, we favor a concerted cycloaddition mechanism and not a stepwise mechanism for the present reaction. It is of interest to note that the newly-formed butadiene bridge in 3 is located at the endo side of the norbornene ring; but the ethylene bridge in 4 resulting from norbornadiene is located at

the exo side.

REFERENCES

- (a) R. Hoffmann and R. B. Woodward, <u>J. Amer. Chem. Soc.</u> <u>87</u>, 2046, 4388 (1965); (b) R. B. Woodward and R. Hoffmann, <u>The Conservation of Orbital Symmetry</u>, Verlag Chemie: GmbH-Academic Press, Inc., pp 83–85 (1970).
- (a) R. C. Cookson, B. V. Drake, J. Hudec, and A. Morrison, <u>Chem. Commun.</u> <u>1966</u>, 15; (b)
 S. Ito, Y. Fujise, T. Okuda, and Y. Inoue, Bull. Chem. Soc. Japan <u>39</u>, 1351 (1966).
- Refer to T. Nozoe, T. Mukai, T. Nagase and Y. Toyooka, <u>Bull. Chem. Soc. Japan</u>, <u>33</u>, 1247 (1960);
 A. S. Kende, <u>J. Amer. Chem. Soc.</u>, <u>88</u>, 5026 (1966).
- 4. d-qui = doublet of quintets, d-m = doublet of multiplets, six = sixtet, and so on.
- (a) L. M. Jackman and S. Sternhell, <u>Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry</u>, 2nd ed, Pergamon Press, New York, N.Y., pp. 230-231, 288-289 (1969); (b) K. Tori, K. Aono, Y. Hata, R. Muneyuki, T. Tsuji, and H. Tanida, <u>Tetrahedron Letters 1966</u>, 9; (c) N. Kamezawa, K. Sakashita, and K. Hayamizu, <u>Organic Mass Resonance 1</u>, 405 (1969).
- 6. Vpc revealed formation of another minor 1: 1 adduct, whose structure was not determined.
- 7. An extensive investigation of the reactions of 1 with norbornene and norbornadiene was independently carried out by Y. Kitahara and T. Uehara. Their major adduct from the reaction with the diene was reported to have the structure 4 in agreement with our determination: Y. Kitahara and T. Uehara, Abstracts of the 3rd Symposium of Structural Organic Chemistry, Hiroshima, November, 1970, p. 38.
- (a) H. Tanida, T. Yano, and M. Ueyama, <u>Bull. Chem. Soc. Japan</u> in press (1972); (b) S. Itö, K. Sakan and Y. Fujise, <u>Tetrahedron Letters</u>, <u>1969</u>, 775.

Fig. 1. Pseudo contact shift induced by Eu(DPM)₃